МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА»

Химическая технология вяжущих материалов

Направление подготовки: 18.03.01 «Химическая технология»

Направленность программы: Химическая технология вяжущих и композиционных материалов

> Квалификация (степень) бакалавр

> > Форма обучения

очная

Институт: Химико-технологический институт

Кафедра: Технологии цемента и композиционных материалов

Белгород – 2016

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 18.03.01 Химическая технология (уровень бакалавриата), утвержденного Приказом исполняющего обязанности Министра образования и науки Российской федерации от 11 августа 2016 г., № 1005.
- плана учебного процесса БГТУ им. В.Г. Шухова по направлению подготовки 18.03.01 Химическая технология, направлености программы 18.03.01 02 Химическая технология вяжущих и композиционных материалов, введенного в действие в 2016 году.

Составитель (составители): д.т.н., проф В гу (В.Д. Барбанягрэ) (подпись)
Рабочая программа согласована с выпускающей кафедрой <u>Технологии цемента и композиционных материалов</u> (наименование кафедры) Заведующий кафедрой: д.т.н., проф. (И. Н. Борисов) (ученая степень и звание, подпись) (инициалы, фамилия)
«39» <u>сентяюря</u> 2016 г.
Рабочая программа обсуждена на заседании кафедры
«29» <u>сентября</u> 2016 г., протокол № 2
Заведующий кафедрой: д.т.н., проф(И. Н. Борисов) (ученая степень и звание, подпись) (инициалы, фамилия)
Рабочая программа одобрена методической комиссией Химико- технологического института
«15»10 2016 г., протокол № Д
Председатель: к.т.н., доцент

на рабочую программу учебной дисциплины высшего образования «Химическая технология вяжущих материалов», направление подготовки: 18.03.01 «Химическая технология», профиль 18.03.01-02 «Химическая технология вяжущих материалов».

Учебная дисциплина «Химическая технология вяжущих материалов» преподается в Белгородском государственном технологическом университете им. В.Г. Шухова на кафедре «Технологии цемента и композиционных материалов» (автор профессор, д.т.н. Барбанягрэ В.Д.). Объем учебной дисциплины: 7 зачетных единиц, 252 часа. Дисциплина включает 68 часов лекционных занятий и 34 часа лабораторных занятий, расчетно-графическое задание и завершается дисциплина получением зачета и сдачей экзамена.

Изучение дисциплины необходимо для осознанного восприятия следующих специальных дисциплин: «Технология производства цемента», «Научно-исследовательская работа». Программой дисциплины предусмотрено подробное изучение следующих разделов: классификации вяжущих материалов, химической технологии воздушных вяжущих, химической гидравлических вяжущих материалов И портландцемента высокотемпературной химии равновесных процессов, химии производства портландцемента, химии цементного камня и бетона, а также подробно рассмотрены цементы специального назначения.

Особое место дисциплины занимает изучение процессов формирования минералов при обжиге клинкера, ускорения и торможения химических реакций в присутствии примесных элементов, гидратации и твердения цементов, химии специальных цементов. Лекционный материал сопровождается объяснением частных случаев и производственным примером для соответствующих разделов изучаемой дисциплины, тематика и направленность которых имеет прямое практическое применение на производстве. Тематика расчетно-графических заданий полностью соответствует профилю дисциплины и в полном объеме отражает химическую технологию вяжущих материалов.

В настоящее время является актуальным использование в производстве вяжущих веществ техногенных отходов. Необходимо уделять более пристальное внимание вопросам влияния вносимых элементов на процессы формирования минералов при обжиге клинкера и качество готового продукта.

Учебная дисциплина обеспечена учебной литературой всех видов занятий. Кафедра ТЦКМ имеет достаточную базу для их проведения: лекционную аудиторию, 2 лабораторных аудитории с необходимым для выполнения лабораторных работ оборудованием, а также компьютерный класс, в котором установлены программы по расчету состава сырьевых смесей.

Рабочая программа учебной дисциплины полностью соответствует требованиям Федерального государственного стандарта высшего образования по направлению 18.03.01 «Химическая технология» (уровень бакалавриата), профиль 18.03.01-02 «Химическая технология вяжущих материалов» и позволяет студентам в полной мере овладеть профессиональными компетенциями.

Директор завода ООО «Азия цемент». Пензенская обл., Никольский р-н;

с. Усть-Инза, ул. Родники, 65

В.Ю. Фетисов

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Формируемые компетенции		компетенции	Требования к результатам обучения
Ŋ <u>o</u>	Код компетенции	Компетенция	
		Профессион	альные
1	ПК-1	Способность и готов-	В результате освоения дисциплины обучаю-
		ность осуществлять	щийся должен
		технологический про-	Знать: основные требования регламента
		цесс в соответствии с	промышленных технологических процессов
		регламентом и исполь-	производства вяжущих материалов.
		зовать технические	Уметь: понимать и анализировать показания
		средства для измерения	промышленных средств контроля производ-
		основных параметров	ства вяжущих материалов.
		технологического про-	Владеть: знаниями о контролируемых пара-
		цесса, свойств сырья и	метрах качества технологического процесса
		продукции.	производства вяжущих материалов.
2	ПК-10	Способность проводить	В результате освоения дисциплины обучаю-
		анализ сырья, материа-	щийся должен
		лов и готовой продук-	Знать: методы исследований качества сы-
		ции, осуществлять	рья, полуфабрикатов, вяжущих и компози-
		оценку результатов	ционных материалов.
		анализа.	Уметь: применять физико-химические мето-
			ды для исследования свойств сырья, полу-
			фабрикатов и готовой продукции.
			Владеть: методиками проведения современ-
			ных исследований качества сырья, полуфаб-
			рикатов и готовых вяжущих и композици-
			онных материалов;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

<u>№</u>	Наименование дисциплины (модуля)
1	Сырьевые материалы в производстве вяжущих
2	Общая химическая технология
3	Физическая химия силикатов

Содержание дисциплины служит основой для изучения следующих дисциплин:

$N_{\underline{0}}$	Наименование дисциплины (модуля)
1	Технология производства цемента
2	Научно-исследовательская работа
3	Контроль качества вяжущих материалов

3. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 7 зач. единиц, 252 часа.

Вид учебной работы	Всего	Семестр
	часов	№ 5
Общая трудоемкость дисциплины, час	252	252
Контактная работа (аудиторные занятия), в т.ч.:	102	102
лекции	68	68
лабораторные	34	34
практические		
Самостоятельная работа студентов, в том числе:	150	150
Курсовой проект		
Курсовая работа		
Расчетно-графическое задания		
Индивидуальное домашнее задание	9	9
Другие виды самостоятельной работы	105	105
Форма промежуточной аттестации	зачет,	зачет,
(зачет, экзамен)	36	36

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Наименование тем, их содержание и объем Курс 3 Семестр 5

			ел по ві	ематич идам уч вки, час	ебной
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Лабораторные занятия	Самостоятель- ная работа
1. Кл	пассификация вяжущих материалов				
1	Краткий исторический очерк развития науки и производства вяжущих материалов. Современное состояние этой отрасли знания и производства в России и за рубежом. Классификация вяжущих материалов. Основные признаки вяжущих веществ. Принципы классификации вяжущих материалов по основным свойствам и области применения, по типу твердения, по химическим реакциям и виду затворителя. Новые виды вяжущих материалов.	4			4
2. XV	імическая технология воздушных вяжущих				
3	Процессы, протекающие при термической обработке гипса. Условия образования, свойства модификаций гипса. Обработка паром под давлением и варка в жидких средах в технологии высокопрочного гипса. Процессы твердения ангидритового вяжущего и высокообжигового гипса. Теории твердения гипсовых вяжущих. Ускорители и замедлители твердения. Смешанные вяжущие. Особенности процессов твердения гипсоцементопуццолановых вяжущих. Процессы твердения магнезиальных вяжущих веществ. Состав и затворители магнезиальных вяжущих веществ. Процессы твердения. Свойства и применение магнезиальных вяжущих. Известковые вяжущие, термическая обработка, состав, гидратация и твердение. Строительная известь. Классификация. Физико-	4		4	8
	химические основы получения извести. Условия диссоциации Са- CO_3 , состав и свойства извести, недожог и пережог извести. Твердение известковых растворов. Известково-кремнеземистые вяжущие. Состав и свойства известково-кремнеземистых вяжущих. Физико-химические основы гидротермальных процессов синтеза прочности известково-кремнеземистых изделий.	4		8	12
3. XI	імическая технология гидравлических вяжущих мате	риалог	в. Порт	гландц	емент.
4	Портландцемент. Общая характеристика состава. Определение портландцемента. Портландцементный клинкер. Характеристика состава клинкера: химическая, модульная, фазовая.	4		4	6
5	Трехкальциевый силикат и его твердые растворы. Полиморфизм, предельная растворимость отдельных химических элементов в составе C_3S . Температурные области стабильности в клинкере. Алит C_3S . Фаза двухкальциевого силиката Ca_2SiO_4 . Двухкальциевый силикат и его твердые растворы. Полиморфизм, предельная растворимость отдельных химических элементов в составе C_2S . Состав твердых растворов. Белит C_2S .	4			4
6	Алюминатная фаза цементного клинкера. Трехкальциевый алюминат и другие алюминаты кальция. Предельная растворимость химических элементов в составе C_3A . Состав твердых растворов. Термическая и химическая устойчивость C_3A .	4			2

	Алюмоферритная фаза цементного клинкера. Переменный состав			
	алюмоферрита кальция. Растворимость химических элементов в			
	составе алюмоферритной фазы. Состав твердых растворов. Тер-			
	мическая и химическая устойчивость алюмоферритов кальция.			
	* * *			ļ
	псокотемпературная химия равновесных процессов			
	Образование клинкера в системе C-C ₂ S-C ₁₂ A ₇ -C ₄ AF. Особенности			
1 1	фазовых превращений в системе $C-C_2S-C_{12}A_7-C_4AF$.			
	Системы, содержащие SO_3 или щелочи, или то и другое вместе.	4		4
	Фазы, содержащие MgO. Влияние MgO на равновесия в системе			
	$C-C_2S-C_{12}A_7-C_2F$. Фазы, структурно родственные гелениту.			
5. Xu	мия производства портландцемента			
	Коллоидная природа шлама. Водопотребность шлама и пути ее			
	снижения. Поверхностно-активные вещества (ПАВ).			
	Свойства сухих порошкообразных материалов: текучесть, слежи-	4	8	12
1	ваемость, аутогезия, когезия, агломерация.	•	_	
	Межфазная граница, поверхностная энергия. Энергия аморфиза-			
	ции. Механохимические реакции.			
	Термическое разложение СаСО ₃ и водных алюмосиликатов. По-			
9	лиморфные превращения Al ₂ O ₃ , SiO ₂ , Fe ₂ O ₃ . Изменения дисперс-			
	ности материалов при нагревании.			
	Процессы, протекающие при обжиге сырьевой смеси без участия	4		4
	жидкой фазы. Диффузия. Механизм и кинетика реакций в твердом	-		
	состоянии. Ступенчатость реакций. Стабильные и промежуточные			
	состояния.			
	Температура образования эвтектического и клинкерного распла-			
	ва. Количество, состав и свойства расплавов. Механизм и кинети-			
	ка растворения C ₂ S и CaO в расплаве. Уравнение Нернста. Диффу-			
	зия ионов в расплаве. Образование алита. Влияние скорости	4		5
	охлаждения на конечный состав клинкера. Роль модифицирую-			
	щих элементов при этом. Неравновесные условия при обжиге			
	клинкера.			
	Ускорение и торможение химических реакций в присутствии			
	примесных элементов. Промежуточные комплексные соединения:			
	спурит, сульфоалюминат кальция, сульфосиликат кальция, фтори-	4		_
	ды, хлориды и другие. Механизм каталитического влияния фто-	4		5
	ридов и хлоридов, получение галоидно-содержащих клинкеров			
	при пониженных температурах. Сульфоалюминатный и сульфо-			
	ферритный клинкеры.			
6. Хи	мия цементного камня и бетона			
10	Гидратация цементов: портландского и других.			
12	Природа вяжущих свойств фаз цементного клинкера по работам	4	4	7
	Журвлева В.Ф. и других авторов. Химические реакции гидртации	4	4	7
	клинкерных фаз. Состав и структура гидратных фаз.			
	Процессы твердения цементов. Физические процессы при гидра-			
	тации цемента. Синтез прочности цементного камня. Влияние	4	6	11
1	•	4	U	11
	фазового состава, степени измельчения, температуры, добавок.			
	Химия портландцементов со специальными добавками.			
	Химия специальных цементов. Особенности процессов гидрата-			
	ции и твердения БТЦ, сульфатостойкого, пластифицированного,			
	гидрофобного, тампонажного, шлакового, пуццоланового, ВНВ.	4		5
	Органические замедлители и ускорители схватывания. Интенси-	4		3
	фикаторы помола клинкера. Водопонижающие и суперпластифи-			
1	каторы. Неорганические ускорители и замедлители твердения це-			
	ментного камня.			
	Коррозия цементного камня и бетона и меры ее предотвращения.			
	Химические и физические процессы в цементном камне при воз-			
		4		5
	действии агрессивных сред. Коррозия выщелачивания; сульфат-	4		ر
i l	ная; магнезиальная и кислотная. Коррозия бетона. Меры борьбы с			
1	**************************************			i
1	коррозией.			l
7. Др	угие виды цементов.			
7. Др	угие виды цементов. Алюминатный цемент. Состав алюминатного цемента. Особенно-	Л		5
7. Др	угие виды цементов.	4		5

17	Фосфатные цементы и связки и другие вяжущие композиции. Связки на основе фосфорной кислоты. Зубные цементы. Кислотно-упорные цементы. Шлакощелочные вяжущие.	2		3
18	Особо высокопрочные цементы. Фазовый состав, микроструктура и факторы, обеспечивающие высокую прочность цементного камня.	2		3
	ВСЕГО	68	34	105

4.2. Содержание практических (семинарских) занятий

Не предусмотрено учебным планом

4.3. Содержание лабораторных занятий

No	Наименование	Тема лабораторного занятия	К-во	К-во
Π/Π	раздела дисциплины		часов	часов
				CPC
		семестр № 5		
	Химическая техноло-	Изучение свойств строительной извести	4	4
1	гия воздушных вяжу-	Получение строительного гипса	4	4
	щих	Изучение свойств гипсового вяжущего	4	4
		Изучение микроструктуры цементного	4	4
	Химическая техноло-	клинкера	-	7
2	гия гидравлических	Определение титра портландцементной	4	4
2	вяжущих материалов.	сырьевой смеси		Т
	Портландцемент.	Определение содержания свободной из-	4	4
		вести в клинкере	+	†
		Определение содержания гипса в цемен-		
3	Химия цементного	те. Влияние добавки гипса на сроки	6	6
3	камня и бетона	схватывания цементного теста.		
		Определение водопотребности цемента	4	4
		ИТОГО:	34	34

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

- 1. Основные исторические даты развития вяжущих материалов.
- 2. Современное состояние производства вяжущих материалов.
- 3. Классификация вяжущих веществ по основным свойствам и области применения: классификация с учетом вида затворителя.
 - 4. Термическая дегидратация двуводного гипс в открытой системе (на воздухе).
 - 5. Термическая дегидратация двуводного гипса в закрытой системе (в автоклавах).
- 6. Дегидратация двуводного гипса в жидких средах. Виды и концентрации растворов, особенности процесса.
 - 7. Реакции твердения низкообжигового гипса. Теории твердения Ле-Шателье и Байкова.
 - 8. Особенности твердения высокообжигового гипса.
 - 9. Ускорители и замедлители процессов схватывания строительного гипса.

- 10. Гипсоцементопуццолановые вяжущие. Состав, особенности твердения.
- 11. Магнезиальные вяжущие. Состав, особенности твердения.
- 12. Строительная воздушная известь. Состав, особенности получения, свойства, недожог и пережог извести.
 - 13. Гашение извести. Растворимость извести в воде.
- 14. Твердения изделий на основе воздушной извести карбонатное, гидратационное, гидросиликатное, пуццолановое.
 - 15. Интенсификация гидросиликатного типа твердения в автоклаве.
 - 16. Виды добавок интенсификаторов твердения.
- 17. Портландцемент. Определение. Состав портландцементного клинкера: химический, модульный, расчетный минералогический. Роль отдельных оксидов, каждого модуля, оптимальные значения модулей.
- 18. Коэффициент насыщения кремнезем известью (КН). Вывод формулы КН. Определение КН.
- 19. Фаза C₃S (фаза алита). Состав, структура, полиморфные модификации, твердые растворы. Алит в составе клинкера.
- 20. Фаза C_2S (фаза белит). Состав, структура, полиморфные модификации, твердые растворы. Белит в составе клинкера.
 - 21. Алюминатная фаза клинкера. Состав, структура, твердые растворы.
 - 22. Четырехкомпонентная система: C-A-F-S, подсистема C-C₂S-C₁₂A₇-C₄AF.
 - 23. Фазы, содержащие MgO. Влияние MgO на равновесия в системе $C-C_2S-C_{12}A_7-C_2F$.
 - 24. Расчет минералогического состава клинкера по Кинду.
- 25. Четырехкомпонентная система: C-A-F-S, подсистема C-C₂S-C₁₂A₇-C₄AF, объем C₃S в ней.
 - 26. Особенности фазовых превращений в подсистеме C-C₂S-C₁₂A₇-C₄AF.
- 27. Механохимические процессы при измельчении твердых тел, аморфизация поверхностных слоев.
- 28. Термические превращения компонентов цементной сырьевой смеси: CaCO₃, глинистых минералов. Полиморфные превращения, изменение дисперсности при нагревании, термохимическая активация.
- 29. Процессы, протекающие при обжиге сырьевой смеси без участия расплава. Диффузия, механизм и кинетика реакций в твердом состоянии. Ступенчатость реакции, промежуточные состояния. Состав материала перед зоной спекания.
- 30. Влияние каталитических и модифицирующих элементов на твердофазные реакции; промежуточные примесные соединения: спуррит, сульфоалюминат кальция, сульфосиликат кальция, фториды, хлориды. Роль первичных микрорасплавов на твердофазные реакции.
- 31. Процессы при обжиге цементного клинкера с участием жидкой фазы (клинкерного расплава). Состав, количество и температура образования клинкерного расплава. Механизм и китетика растворения C₂S и CaO в расплаве. Структура и свойства (вязкость, поверхностное натяжение) клинкерного расплава. Диффузия ионов, уравнение Нернста. Образование алита.
 - 32. Влияние скорости охлаждения на фазовый состав клинкера.
- 33. Интенсификация процессов образования клинкера в условиях неравновесного нагревания; быстрый (резкий) обжиг; при укрупненном помоле карбонатного компонента; в способе двухшихтовой технологии.
- 34. Химическая интенсификация процессов клинкерообразования, роль примесных элементов. Механизм каталитического влияния фторидов, хлоридов при пониженных температурах обжига.
- 35. Отрицательное действие на процессы спекания клинкера повышенной концентрации Na₂O, K₂O, SO₃, P₂O₅, Cr₂O₃. Взаимная нейтрализация вредных примесей.
- 36. Гидратационная активность цемента и составляющих его фаз. Кислотно-основные соотношения, роль состава и структуры фаз в проявлении гидратацилнных свойств фаз.

- 37. Химические процессы гидратации отдельных фаз портландцемента: алита, белита, трех-кальциевого алюмината, четырехкальциевого алюмоферрита, роль гипса в процессах гидратации и твердении цемента.
 - 38. Механизм и периоды гидратации портландцемента.
 - 39. Состав и структура гидратных фаз портландцемента.
 - 40. Гидратация портландцемента. Особенности совместной гидратации клинкерных фаз.
- 41. Физические процессы при гидратации цемента. Синтез прочности цементного камня. Влияние фазового состава, степени измельчения, температуры, добавок, В/Ц отношения.
- 42. Химические виды коррозии цементного камня: выщелачивания, сульфатная, магнезиальная, кислотная, углекислотная.
 - 43. Физические процессы коррозии. Коррозия бетона. Методы борьбы с коррозией.
- 44. Химия и особенности технологии белого и декоративных цементов. Факторы, повышающие белизну цемента.
- 45. Активные минеральные добавки в портландцементе, их классификация. Реакции пуццоланового типа твердения.
- 46. Особенности состава, гидратации и твердения шлакопортландцемента. Модули основности и активности шлака.
- 47. Состав и виды глиноземистого цемента. Особенности процессов гидратации твердения; строительно-технические свойства глиноземистого цемента.
- 48. Расширяющиеся, водонепроницаемые и напрягающие цементы. Реакции, вызывающие расширение цементного камня, управление этим процессом.
- 49. Быстротвердеющие, высокопрочные и особовысокопрочные цементы. Состав, микроструктура и другие факторы, обеспечивающие высокую прочность цементного камня.
- 50. Цементы со специальными добавками. Органические замедлители и ускорители схватывания. Неорганические ускорители и замедлители твердения цементного камня.
- 51. Гидрофобные и водопонижающие добавки в цемент, пластификаторы, суперпластификаторы, гиперпластификаторы.
- 52. Интенсификаторы помола, эффект понижения твердости по Ребиндеру. Механизм действия.
 - 53. Шлако-щелочные вяжущие, состав, процессы твердения, основыне свойства.
- 54. Фосфатные цементы и связки на основе фосфорной кислоты. Кислото-упорные цементы, реакции твердения.
- 55. природа вяжущих свойств по работам В.Ф. Журавлева и других авторов, современные представления.
 - 56. Классификация вяжущих по типу твердения (по Журавлеву В.Ф.).

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем.

Учебным планом не предусмотрены.

5.3. Перечень индивидуальных домашних заданий, расчетно-графических заданий.

Учебным планом предусмотрено индивидуальное домашнее задание

Тема ИДЗ «Состав извести и карбонатной породы для производства извести».

Выполнение индивидуального домашнего задания по дисциплине проводится с целью:

- систематизации и закрепления теоретических знаний, полученных при изучении курса;
- углубления и расширения теоретических знаний в соответствии с заданной темой;
- формирования умений в использовании справочной и нормативнотехнической документации.

При выполнении ИДЗ студенты изучают требования, предъявляемые к качеству сырья и готовой продукции, состав и основные свойства строительной извести, химические процессы, протекающие при получении и гидратации известковых вяжущих материалов. Студенты должны знать классификацию строительной извести и сырьевых материалов для производства строительной извести. Кроме этого, необходимо произвести расчеты состава извести и карбонатной породы и по результатам расчетов определить вид и сорт извести, а также класс карбонатной породы.

При разработке ИДЗ студенты пользуются технической, справочной, учебнометодической и научной литературой, государственными и отраслевыми стандартами.

Организация работы

В процессе работы студент получает у руководителя консультации, вносит по его указанию необходимые дополнения и исправления, соответствующим образом оформляет работу.

Студент является автором самостоятельной работы и отвечает за все принятые им решения.

Сроки представления выполненных работ устанавливаются ведущим преподавателем.

Содержание ИДЗ

ИДЗ состоит из пояснительной записки объемом 30...40 страниц и выполняется на листах писчей бумаги формата A4 с размерами 210×297 мм.

ИДЗ должно включать титульный лист, задание на расчет, оглавление и содержать следующие разделы:

Введение.

1. Классификация строительной извести.

- 2. Требования Государственного стандарта к строительной извести.
- 3. Сырьевые материалы для производства строительной извести.
- 4. Расчет состава извести и карбонатной породы для производства извести. Заключение.

Список используемой литературы.

Титульный лист является первой страницей ИДЗ и оформляется в соответствии с требованиями. ИДЗ выполняется студентами на основании индивидуального задания по варианту, получаемому у ведущего преподавателя. В задании формулируется название темы, и сообщаются следующие исходные данные:

- активность извести;
- $-\,$ содержание активного оксида магния MgO_{akt} в извести;
- содержание остаточной углекислоты (CO₂) $_{\text{ост}}$ в извести;
- потери при прокаливании глины ППП_{гл}.

Остальные сведения, необходимые для выполнения ИДЗ, подбираются из научно-технической и справочной литературы, а также нормативной документации.

Пояснительная записка должна быть набрана на компьютере или написана на одной стороне листа бумаги грамотно, аккуратно, разборчиво и отличаться краткостью и ясностью изложения. В расчетной части должны быть приведены все формулы с указанием размерности в международной системе единиц. По тексту пояснительной записки в соответствующих местах необходимо делать ссылки на использованную литературу, таблицы, рисунки и формулы, которые должны иметь номера и названия.

ИДЗ перед сдачей его на кафедру должно быть подписана студентом с указанием даты написания. Работа брошюруется.

Готовое ИДЗ представляется преподавателю для проверки. Задание должно быть проверено руководителем в семидневный срок после получения на проверку. По результатам проверки, ИДЗ оценивается согласно действующему в университете «Положению о промежуточной и итоговой аттестациях».

5.4. Перечень контрольных работ.

Не предусмотрено учебным планом.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Классен В.К. Технология и оптимизация производства цемента. Белгород: Изд-во БГТУ им. В.Г.Шухова, 2012. 307 с. (Рекомендовано ГОУ ВПО РХТУ им. Д.И. Менделеева в качестве учебного пособия)
- 2. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химическая технология вяжущих материалов.-М.:Высш.школа, 1980.-472 с.
- 3. Химия вяжущих материалов: методические указания к выполнению курсовой работы / В.Д. Барбанягрэ, Л.Б. Афанасьева. Белгород: Изд-во БГТУ им. В.Г. Шухова, 2009.-40 с.
- 4. Лугинина И.Г. Химия и химическая технология неорганических вяжущих материалов. Белгород: Изд-во БГТУ им. В.Г.Шухова, 2004. Ч. 1-240 с.; Ч. 2-198 с.

6.2. Перечень дополнительной литературы

- 1. В. К. Классен, И. Н. Борисов. Техногенныен материалы в производстве цемента. Белгород: Изд-во БГТУ им. В.Г.Шухова, 2008. 126 с.
 - 2. Тейлор Х. Химия цемента / Пер. с англ. М.: Мир, 1996. 560 с.
 - 3. Отраслевые отечественные и зарубежные журналы «Цемент и его применение», «Техника и технология силикатных материалов», «Строительные материалы». «ZEMENT KALK GIPS», «ZEMENT International».

6.3. Перечень интернет ресурсов

1. <u>Сборник нормативных документов «СтройКонсультант»</u> <u>www.snip.ru</u> - Доступ осуществляется в зале электронных ресурсов НТБ (к.302).

2. Электронный читальный зал https://elib.bstu.ru/

Содержит полные тексты учебных и учебно-методических пособий, монографий, авторами которых являются преподаватели университета; учебных и учебнометодических изданий, приобретенных во внешних издательствах и книготорговых организациях; редких и ценных изданий из фонда научно-технической библиотеки. Доступ к электронному читальному залу осуществляется с компьютеров локальной сети университета и сети Интернет

3. Научная электронная библиотека eLIBRARY.RU elibrary.ru

Крупнейший российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты более 19 млн научных статей и публикаций. На платформе eLIBRARY.RU доступны электронные версии более 3900 российских научно-технических журналов, в том числе более 2800 журналов в открытом доступе. В настоящее время открыт доступ к 79 российским научно-техническим журналам. Доступ к ресурсу осуществляется с компьютеров локальной сети универститета и в зале электронных ресурсов (к.302).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕС-ПЕЧЕНИЕ

Лекционные занятия проводятся в специально оборудованных учебных аудиториях, 103 УК2, оснащенной мультимедийным комплексом и 212 УК2, оснащенной мультимедийным комплексом и 12 компьютерами.

Лабораторные занятия проводятся в специализированных учебных и научно-исследовательских лабораториях.

- Лаборатория обжига и физико-механических испытаний, 109 УК2, оснащенная оборудованием: электропечь Thermoceramics; электропечь камерная СНОЛ 2 шт; электрошкаф сушильный СНОЛ 2 шт; вакуумсушильный шкаф ГЗВ; прессовое оборудование.
- Лаборатория микроскопических исследований, 106 УК2, оснащенная оборудованием: Микроскоп Carl Zeiss Jena NU2; система пропобоподготовки Minitom; микроскоп стереоскопический МБС-10; поляризационно-интерференционный микроскоп BIOLAR PI.
- Помольное отделение, подвальное помещение под 109 УК2, оснащенное оборудованием: прибор для определения тонкости помола цемента СММ; механическое сито; щековая дробилка; мельница 2-х камерная МБЛ.
- Лаборатория химических анализов, 110 УК2, оснащенная оборудованием: установка по изучению свойств воздушной строительной извести; установка по определению содержания свободной извести в клинкере; интерференционно-поляризационный микрскоп МРІ 5; поляризационный микроскоп МИН-8; электропечь камерная СНОЛ

Самостоятельная подготовка студентов может проходить в зале курсового и дипломного проектирования в учебной аудитории 212 УК2, оснащенной 12 компьютерами; в библиотеке кафедры ТЦКМ 119-а УК2, в которой собраны периодические издания по специальности за 15 лет, учебники, учебные пособия, справочники, электронные пособия.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Утверждение рабочей п	рограммы без изменений	
Рабочая программа без	изменений утверждена на 2017	7 /2018 учебный год.
Протокол № 2	заседания кафедры от « <u>07</u> »	сентября 2017 г.
Заведующий кафедрой	th	Борисов И. Н.
Лиректор института	pfiel co	Павленко В.И.

9. ПЕРЕУТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

	ей программы без изменений	
	изменений утверждена на 2018 /	•
Протокол № <u>13</u>	_ заседания кафедры от « <u>_15_</u> »_	<u>мая</u> 2018 г.
Заведующий кафедрой	th	Борисов И. Н.
Директор института	Reference	Павленко В.И.

приложения

Приложение №1. Методические указания для обучающегося по освоению дисциплины «Химическая технология вяжущих материалов»

Дисциплина относится к блоку дисциплин профессионального цикла учебного плана и является неотъемлемой частью подготовки бакалавров по направлению 18.03.01 Химическая технология.

Кроме основного учебника студентам следует пользоваться дополнительной литературой и журналами «Строительные материалы», «Цемент и его применение», «Вестник БГТУ им. В. Г. Шухова», «Техника и технология силикатных материалов», «ZEMENT - KALK – GIPS», «ZEMENT International» а также специализированными учебными пособиями. В них излагаются дополнительные сведения к теоретическому курсу и последние данные о современных достижениях науки и производства в промышленности строительных материалов в нашей стране и за рубежом. Новейшую информацию можно искать и в информационной сети, но относиться к таким материалам следует с осторожностью.

Каждый раздел курса посвящен группе сходных строительных материалов. После проработки соответствующего раздела рекомендуется самостоятельно обобщить материал по разделу. В случае возникновения вопросов и сомнений, следует уточнить по учебнику или другой литературе, проконсультироваться у ведущего преподавателя, так как последующие вопросы часто исходят из предыдущих ответов. В ходе прослушивания лекций студентам рекомендуется определения, формулы, схемы, расчеты излагать в письменном виде, что помогает усвоению и правильному изучению темы.

Изучение отдельных разделов дисциплины «Химическая технология вяжущих материалов», завершается выполнением контрольных или тестовых заданий. Задания предусмотрены не только для контроля и проверки знаний, но и для выявления тем, вызвавших затруднения у студентов и требующих дополнительных разъяснений.

Кроме теоретических знаний студент должен получать в практические навыки. Для этого предусмотрены лабораторные работы. Студент выполняет лабораторные работы самостоятельно, но под наблюдением инженера. С этой целью по установленному расписанию студенты приходя в лабораторию, для лучшего усвоения материала выполняют на одном занятии, как правило, не более одной лабораторной работы. Форму и характер учебных занятий в лаборатории уточняет преподаватель; посещение этих занятий обязательно. При проведении групповых занятий в лаборатории студенты используют пособия по лабораторному практикуму, однако, основные пояснения по выполнению работ они получают от преподавателя. При выполнении лабораторных работ студент предварительно тщательно изучает порядок и содержание выполняемой работы по методическим указаниям. К каждой лабораторной работе студент готовится самостоятельно и оформляет ее согласно требованиям, в личном лабораторном журнале. Допуск к работе студент получает у ведущего преподавателя. Выполнение лабораторной работы контролируется инженером. Отметку о выполнении работы ставит инженер в рабочий журнал студента. Каждая лабораторная работа защищается.

Студент, получивший зачеты по лабораторным работам и выполнивший успешно все контрольные задания, допускается к экзамену.