МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА»

(БГТУ им. В.Г. Шухова)

СОГЛАСОВАНО

Начальник отдела магистратуры

И.В. Ярмоленко

«16» мая 2016

УТВЕРЖДАЮ

Директор института ХТИ

Павленко В.И.

« 16 » мая 2016

РАБОЧАЯ ПРОГРАММА

дисциплины

Тепловые и аэродинамические процессы в промышленных агрегатах Направление подготовки:

18.04.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии Направленность программы:

Рациональное использование материальных и энергетических ресурсов в химической технологии вяжущих материалов

Квалификация

магистр

Форма обучения

очная

Институт: Химико-технологический институт

Кафедра: Технологии цемента и композиционных материалов

Рабочая программа составлена на основании требований:

- Федерального государственного образовательного стандарта высшего образования по направлению подготовки 18.04.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии (уровень магистратуры), утвержденного Приказом Министерства образования и науки Российской федерации от 20 ноября 2014 г., №1480.
- плана учебного процесса БГТУ им. В.Г. Шухова, введенного в действие в 2016 году.

Составитель (составители)	: к.т.н., доц (В.М. Коновалов) (ученая степень и звание, подпись) (инициалы, фамилия)
Рабочая программа согласо	ована с выпускающей кафедрой
<u>Технологии це</u>	мента и композиционных материалов
(E	паименование кафедры)
Заведующий кафедрой: д	д.т.н., проф(И. Н. Борисов) (ученая степень и звание, подпись) (инициалы, фамилия)
« 14 » мая 2016 г.	
Рабочая программа обсужд	ена на заседании кафедры
<u>« 14 » мая 2016 </u> г., проток	сол № 11
Заведующий кафедрой:	д.т.н., проф. (И. Н. Борисов) (ученая степень и звание, подпись) (инициалы, фамилия)
Рабочая программа одобре	на методической комиссией института
<u>« 15 » мая 2016</u> г., протоко	ол № 9

(ученая степень и звание, подпись)

(Л. А. Порожнюк)

(инициалы, фамилия)

Председатель

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Формируемые компетенции			Требования к результатам обучения	
No	Код компе-	Компетенция	First in Fredh. in its 150	
	тенции	,		
	·	Общекульт	гурные	
1	ОПК-3	Способностью к профессио-	В результате освоения дисциплины обучаю-	
		нальной эксплуатации со-	щийся должен	
		временного оборудования и	Знать: основные законы физики, физиче-	
		приборов в соответствии с	ской химии, технической термодинамики,	
		направлением подготовки	Газодинамики.	
			Уметь: использовать полученные знания	
			для изыскания наиболее эффективных мето-	
			дов снижения затрат топливо-	
			энергетических ресурсов при одновремен-	
			ном повышении технологических показателей.	
			Владеть: методами анализа химико-технологических процессов, оценкой воз-	
			можности применения различных способов	
			организации энерго-химико-	
			технологических систем (ЭХТС)	
			, ,	
		Производственно-технолог	гическая деятельность	
2	ПК-8	Готовностью к разработке	В результате освоения дисциплины обучаю-	
		технических заданий на про-	щийся должен	
		ектирование и изготовление	Знать: основы комплексных подходов в	
		нестандартного оборудова-	развитии ресурсо-и-энергосберегающих	
		ния	технологий.	
			Уметь: использовать полученные знания	
			для вариантов эффективного использования	
			техногенного и не кондиционного сырья и топлива в технологическом процессе.	
			Владеть: Навыками разработки технических	
			заданий на проектирование и изготовление не-	
			стандартного оборудования	

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРО-ГРАММЫ

Содержание дисциплины основывается и является логическим продолжением следующих дисциплин:

$N_{\underline{0}}$	Наименование дисциплины
1	Энергосбережение в производстве цемента (Курс программы бакалавриата
	18.03.02-01)
2	Тепломассообмен во вращающихся печах (Курс программы бакалавриата
	18.03.02-01)
3	Технология производства цемента (Курс программы бакалавриата 18.03.02-01)

4	Тепловые процессы в химической технологии (Курс программы бакалавриата 18.03.02-01)
5	Физическая химия вяжущих материалов

Содержание дисциплины служит основой для изучения следующих дисциплин:

№	Наименование дисциплины
1	Аудит технологического процесса вяжущих материалов
2	Энергосбережение в производстве композиционных материалов на основе вяжу-
	щих

3.ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет <u>6</u> зач. единиц, <u>216</u> часов.

Вид учебной работы	Всего часов	Семестр № 2
Общая трудоемкость дисциплины, час	216	216
Контактная работа (аудиторные заня- тия), в т.ч.:	68	68
лекции	34	34
лабораторные		
практические	34	34
Самостоятельная работа студентов, в том числе:	148	148
Курсовой проект		
Курсовая работа	36	36
Расчетно-графическое задания		
Индивидуальное домашнее задание		
Другие виды самостоятельной работы	76	76
Форма промежуточная аттестация (экзамен)	36	36

4.СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 4.1 Наименование тем, их содержание и объем Курс 1 Семестр 2

		Объем на тематический раздел по видам учебной нагрузки, час		
№ п/п	Наименование раздела (краткое содержание)	Лекции	Практические занятия	Самостоятельная работа
1. T	ехническая термодинамика		ı	
	Термодинамическая система, параметры, процесс. Энергия, работа и теплота, их эквивалентность. Функции состояния. Внутренняя энергия системы энтальпия. Математическое выражение начал термодинамики. Термодинамические процессы идеальных газов. Политропный процесс. Истечение газов и жидкости. Уравнение Бернулли.	10	12	20
2.	1 1 3			
2.	Тепловые балансы. Сущность высокотемпературного синтеза. Оборудование заводов по производству вяжущих материалов.	12	10	20
	Функции работоспособности. Эксергия. Эксергетический анализ химико-технологических систем. Эффективность сжигания топлива, влияние рекуперативных систем на эффективность теплопередачи в факельном пространстве.			
	Основные виды тепломассообмена в тепловых агрегатах. Закон Фурье и Ньютона-Рихмана. Конвективный теплообмен и теплообмен излучением.			
3.				
	Элементы газо- и гидродинамики. Уравнение Навье – Стокса. Движение жидкости и газов.	6	6	16
	Гидродинамическое подобие. Предельная скорость движения газа. Число Maxa.			
4.				
	Элементы химической термодинамики. Термохимия клинкера. Методы расчета Теплового эффекта клинкерообразования.	6	6	20
	Теплоемкость неорганических соединений. Энтальпия процесса. Уравнение Кирхгофа. Методы расчета энергии Гипса.			
	ВСЕГО	34	34	76

4.2. Содержание практических (семинарских) занятий

No	Наименование	Тема практического (семинарского) занятия	
Π/Π	раздела дисциплины		
1	Техническая термодина-	Газовые смеси	2
	мика	Основные газовые процессы. Теплоемкость,	4
		теплота, работа процесса.	
		Циклические процессы. Энтропия.	2
2	Теплотехника	Эксергетический анализ тепловых агрегатов	4
		Теплообменные процессы в тепловых агре-	4
		гатах.	
		Основные виды тепломассообмена, тепло-	6
		проводность, конвективный теплообмен, из-	
		лучение.	
3	Газодинамика	Истечение газов и жидкостей из сопел.	2
		Гидродинамическое подобие	2
		Основы расчета газовых потоков.	2
4	Физическая химия вя-	Теплоемкость, ее зависимость от температу-	2
	жущих материалов	ры	
		Тепловой эффект реакции, энтальпия и эн-	2
		тропия процесса	
		Термохимия клинкера, энтропийный и эк-	2
		сергетический анализ химико-	
		технологических процессов.	
		ИТОГО:	34

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Перечень контрольных вопросов (типовых заданий)

<u>№</u> п/п	Наименование раздела дисциплины	Содержание вопросов (типовых заданий)
1	Термодинамика.	Понятие о термодинамических процессах. Энергия, работа и теплота. Параметры состояния системы (объём, давление, температура и т.д.) Уравнение состояния газов (Менделеева-Клайперона) Законы Бойля-Мариотта, Гей-Люссака, Шарля Газовая постоянная (физический смысл) Закон состояния идеальных и реальных газов Теплоёмкость: истинная, средняя. Расчет истинной теплоём-
		кости

		T.m.			
		Теплоёмкость: массовая, объёмная, мольная при постоянных			
		объёме, давлении, линейная и нелинейная теплоемкость			
		Коэффициент Пуассона			
		Парциальные давление и объём смеси газов, закон Дальтона			
		Кажущаяся молекулярная масса			
		Первый закон термодинамики			
		Нулевой закон термодинамики			
		Аналитическое выражение I закона термодинамики			
		Энтальпия и внутренняя энергия системы			
		Изохорный процесс в P-V и T-S диаграммах			
		Изобарный процесс в P-V и T-S диаграммах			
		Изотермический процесс в P-V и T-S диаграммах			
		Адиабатный процесс в P-V и T-S диаграммах Адиабатный процесс в P-V и T-S диаграммах			
		Политропный процесс, в Р-V и Т-S диаграммах			
		Прямой цикл Карно в координатах P-V и T-S			
		ІІ закон термодинамики (определение, аналитическое выра-			
		жение)			
		Энтропия (общие понятия, физический смысл) и Вероятность			
2	Теплотехника	Критерий оптимизации тепло-технологических процессов			
	i ongrotoanna	Тепловые процессы в печных агрегатах			
		Виды теплообмена, теплообмен теплопроводностью, закон			
		Фурье.			
		Теплопроводность в плоской и цилиндрической стенки			
		Конвективный теплообмен. Закон Нютона - Рихмана, поня-			
		·			
		тие о тепловом и гидродинамическом слое. Теплопередача			
		от плоской и цилиндрической стенки. Теплообмен излучением. Закон Планка. Связь длины волны			
		и температуры. Закон Вина и Стефана-Больцмана.			
		и температуры. Закон Вина и Стефана-Вольцмана.			
		Излучение абсолютно черного тела, закон Кирхгофа, Изме-			
		нение интенсивности излучения в поглощающей среде, за-			
		кон Бугера-Ламберта-Бера.			
		Тепловой эффект образования клинкера (ТЭК), расчет раз-			
		личными методами.			
		Эксергия (определение, физический смысл)			
		Виды эксергии			
		Потери эксергии			
		Эксергетический баланс, эксергетический КПД			
		Влияние работы клинкерных холодильников на условия			
		теплообмена в печи.			
		Сущность коэффициента теплопотерь. Значение экономии			
		тепла в горячей части печи			
3	Аэродинамика	Термодинамика потоков, 1 закон термодинамики для потока.			
	тородиничики	Истечение газов из сопла (сужающегося, расширяющегося)			
		Определение критических значений истечения газов.			
4	Физическая химия вя-	Термодинамические законы для конденсированных систем			
7		Энтропийный анализ химико технологических процессов			
	жущих материалов	<u> </u>			
		Энтальпия процесса, самопроизвольность протекания реак-			
		ции, тепловой эффект реакции.			
		Теплоемкость нелинейная, функция температуры.			
		Термохимия образования клинкера (ТЭК)			
		Способы расчета ТЭК, закон Гесса			

Зависимость теплового эффекта реакции от температуры.
Закон Кирхгофа.
Константа равновесия, ее взаимосвязь с энтальпией и темпе-
ратурой.
Влияние температуры на термодинамические свойства ве-
ществ и параметры реакции

5.2. Перечень тем курсовых проектов, курсовых работ, их краткое содержание и объем

Курсовая работа: «Термодинамический и тепловой анализ работы цементной вращающейся печи»

В курсовой работе магистрант должен проанализировать технологические схемы производства цемента с точки зрения их энергоэффективности, выполнить необходимые расчеты для энтропийного анализа возможности протекания тепловых процессов в цементной печи. Рассчитать основные параметры горения заданного вида топлива, энтальпию продуктов горения и технологических газов по зонам печи. Сопоставить полученные результаты с основными статьями расхода тепла при обжиге материала заданного химического состава. Определить основные теплопотери корпусом печи с учетом различных видов теплообмена в отдельных технологических зонах агрегата.

Сделать выводы о необходимых мероприятиях по снижению энергопотребления в процессе производства портландцементного клинкера.

6. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6.1. Перечень основной литературы

- 1. Д. Тер Хаар, Г. Вергеланд. /Основы термодинамики / Москва : Вузовская книга, 2006. 200 с.
- 2. Б.М.Гришко, П.А.Трубаев, Техническая термодинамика: ч.1:Основы термодинамики,: учеб.пособие. / -Белгород: БГТУ им Шухова, -2009. 137 с
- 3. Классен В.К. / Технология и оптимизация производства цемента. (учебное пособие). Белгород: Изд-во БГТУ им. В.Г.Шухова, 2012. 308 с.
- 4. Чечеткин А.В. / Занемонец Н.А. Теплотехника. М.: Высшая школа. 1986.
- 5. Крутов В.И./ Техническая термодинамика. М.: Высшая школа. 1991.
- 6. Кузнецова Т.В., Кудрявцев И.В., Тимашев В.В. / Физическая химия вяжущих материалов. М.: Высшая школа. 1989.
- 7. Подпоринов Б. Ф., Должикова Т. А., Попов Е. В. / Техническая термодинамика. Методические указания для заочной формы обучения. БГТУ им. В. Г. Шухова 2003г.
- 8. Коновалов В. М., Поляков Г. П., Перескок С.А., Термодинамика высокотемпературного обжига силикатных систем. Методические указания к выполнению лабораторных работ. Белгород 2009г.

6.2. Перечень дополнительной литературы

Дополнительная литература:

- 1. Вакулович М.П., Новиков И.И. Термодинамика. М.: Машиностроение.- 1972.
- 2. Вердиян М.Э., Бобров Д.А. и др., Эксергетический анализ процессов химической технологии. М.: РХТУ им. Д.И.Менделеева.-2004.
- 3. Дуда В. Цемент. М.: Стройиздат. 1981.
- 4. Классен В.К. Обжиг цементного клинкера. Красноярский отдел: Стройиздат. 1994.
- 5. Теплотехника и тепловые установки предприятий строительных материалов. Лабораторный практикум / Н.П. Кудеярова, Л.Б. Афанасьева, Г.П.Поляков, С.А Перескок. А.В. Черкасов / 2007г.

Справочная и нормативная литература:

1. Рябин В.А., Остроумов М.А., Свит Т.Ф. Термодинамические свойства веществ / справочник. - Ленинградское отд.: Химия. - 1977.

6.3. Перечень интернет ресурсов

- **1.**Сборник нормативных документов «СтройКонсультант» <u>www.snip.ru</u> Доступ осуществляется в зале электронных ресурсов НТБ (к. 302)
- 2. Электронный читальный зал https://elib.bstu.ru/.

Содержит полные тексты учебных и учебно-методических пособий, монографий, авторами которых являются преподаватели университета; учебных и учебно-методических изданий, приобретенных во внешних издательствах и книготорговых организациях; Редких ценных изданий из фонда научно-технической библиотеки. Доступ к электронному читательскому залу осуществляется с компьютеров локальной сети университета и сети Интернет.

3. Научная электронная библиотека eLIBRARY.RU elibrary.ru

Крупнейший российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты более 19 млн. научных статей и публикаций. На платформе eLIBRARY.RU доступны электронные версии более 3900 российских научно-технических журналов, в том числе более 2800 журналов в открытом доступе. В настоящее время открыт доступ к 79 российским научно-техническим журналам. Доступ к ресурсу осуществляется с компьютеров локальной сети университета и в зале электронных ресурсов (к.302).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕ-ЧЕНИЕ

Лекционные занятия проводятся в учебной аудитории 103, оснащенной мультимедийным комплексом.

Практические занятия проводятся в компьютерных классах 212 и 118 оснащенными персональными компьютерами, мультимедийными комплексами и тренажерным комплексам «SIMULEX».

Самостоятельная работа студентов осуществляется в кафедральной библиотеке 119^а и библиотеке БГТУ им. В.Г. Шухова.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа без изменений утверждена на 2016/2017 учебный год. Протокол № 1 заседания кафедры от «8 » сентября 2016 г.

Заведующий кафедрой

Борисов И. Н.

Директор института

русскае Павленко В.И.

8. УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа без изменений утверждена на 2017/2018 учебный год. Протокол № 2 заседания кафедры от «7 » сентября 2017 г.

Заведующий кафедрой

Борисов И. Н.

Директор института

ручение Павленко В.И.

УТВЕРЖДЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Рабочая программа утверждена без изменений на 2018/2019 учебный год. Протокол № 13 заседания кафедры от «15 » мая 2018 г.

Заведующий кафедрой

Борисов И. Н.

Директор института

рревсе Павленко В.И.

ПРИЛОЖЕНИЯ

Приложение №1. Методические указания для обучающегося по освоению дисциплины.

Дисциплина относится к блоку дисциплин профессионального цикла (вариативная часть Б1.М2.В.01) учебного плана и является неотъемлемой частью подготовки магистров по направлению 18.04.02 Дисциплина расширяет специальные знания студентов. При чтении лекций используются современные мультимедийные средства, которые применяются студентами при самостоятельной их работе в курсовом и дипломном проектировании. Содержание практических занятий тесно увязано с лекционным курсом. Самостоятельная работа студентов включает решение задач по определению основных параметров технологических систем, изменения свойств материальных потоков и газодинамических условий, сопровождающих протекание химико-технологических процессов. Текущий контроль включает обсуждение правильности решения поставленных задач, выполнение курсовой работы. Итоговый контроль — экзамен.

Целью изучения курса является формирование у будущих специалистов теоретических знаний по термодинамике силикатных систем, физико-химическим процессам, протекающим в технологии вяжущих материалов основам оптимизации производственных процессов, обусловленных протеканием тепломассообмена.

Изучение дисциплины предполагает решение ряда сложных задач, что дает возможность студентам:

- анализировать научно-техническую литературу;
- осуществлять технологический контроль в производстве материалов;

- проводить технико-экономический анализ производства.
- выполнять основные теплотехнические и аэродинамические расчеты с целью оптимизации технологических параметров технологических процессов и эффективного использования материально-энергетических ресурсов;
- анализировать и оценивать альтернативные варианты технологической схемы производства и отдельных переделов;
- эффективно использовать оборудование, сырье и вспомогательные материалы;
- планировать и проводить научные исследования в области совершенствования технологического процесса;

Самостоятельная работа является главным условием успешного освоения изучаемой учебной дисциплины и формирования высокого профессионализма будущих специалистов.

Исходный этап изучения курса «Тепловые и аэродинамические процессы в промышленных агрегатах» предполагает ознакомление с рабочей программой, характеризующей границы и содержание учебного материала, который подлежит освоению.

Изучение отдельных тем курса необходимо осуществлять в соответствии с поставленными в них целями, их значимостью, основываясь на содержании и вопросах, поставленных в лекции преподавателя и приведенных в планах и заданиях к практическим занятиям, а также методических указаниях.

В учебниках и учебных пособиях, представленных в списке рекомендуемой литературы содержатся возможные ответы на поставленные вопросы. Их осмысление, запоминание и практическое использование являются обязательным условием овладения курсом.

Изучение каждой темы следует завершать выполнением практических заданий, решением задач, содержащихся в соответствующих разделах учебников и методических пособий по курсу «Тепловые и аэродинамические процессы в промышленных агрегатах». Для обеспечения систематического контроля над процессом усвоения тем курса следует пользоваться перечнем контрольных вопросов для проверки знаний по дисциплине, содержащихся в планах и заданиях к занятиям. Если при ответах на сформулированные в перечне вопросы возникнут затруднения, необходимо очередной раз вернуться к изучению соответствующей темы, либо обратиться за консультацией к преподавателю.

Успешное освоение курса дисциплины возможно лишь при систематической работе, требующей глубокого осмысления и повторения пройденного материала, поэтому необходимо делать соответствующие записи по каждой теме.